45 research outputs found

    Isolation and antisense suppression of flavonoid 3', 5'-hydroxylase modifies flower pigments and colour in cyclamen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyclamen is a popular and economically significant pot plant crop in several countries. Molecular breeding technologies provide opportunities to metabolically engineer the well-characterized flavonoid biosynthetic pathway for altered anthocyanin profile and hence the colour of the flower. Previously we reported on a genetic transformation system for cyclamen. Our aim in this study was to change pigment profiles and flower colours in cyclamen through the suppression of flavonoid 3', 5'-hydroxylase, an enzyme in the flavonoid pathway that plays a determining role in the colour of anthocyanin pigments.</p> <p>Results</p> <p>A full-length cDNA putatively identified as a <it>F3'5'H </it>(<it>CpF3'5'H</it>) was isolated from cyclamen flower tissue. Amino acid and phylogeny analyses indicated the <it>CpF3'5'H </it>encodes a F3'5'H enzyme. Two cultivars of minicyclamen were transformed via <it>Agrobacterium tumefaciens </it>with an antisense <it>CpF3'5'H </it>construct. Flowers of the transgenic lines showed modified colour and this correlated positively with the loss of endogenous <it>F3'5'H </it>transcript. Changes in observed colour were confirmed by colorimeter measurements, with an overall loss in intensity of colour (C) in the transgenic lines and a shift in hue from purple to red/pink in one cultivar. HPLC analysis showed that delphinidin-derived pigment levels were reduced in transgenic lines relative to control lines while the percentage of cyanidin-derived pigments increased. Total anthocyanin concentration was reduced up to 80% in some transgenic lines and a smaller increase in flavonol concentration was recorded. Differences were also seen in the ratio of flavonol types that accumulated.</p> <p>Conclusion</p> <p>To our knowledge this is the first report of genetic modification of the anthocyanin pathway in the commercially important species cyclamen. The effects of suppressing a key enzyme, F3'5'H, were wide ranging, extending from anthocyanins to other branches of the flavonoid pathway. The results illustrate the complexity involved in modifying a biosynthetic pathway with multiple branch points to different end products and provides important information for future flower colour modification experiments in cyclamen.</p

    Regulation of UV-induced flavonoid production in Marchantia polymorpha: a role in the evolution of plants for land colonisation?

    Get PDF
    Plants are thought to have colonized the land around 500 million years ago. One of the major challenges the first pioneers faced was protection against UV radiation. UV has severe detrimental effects on plant cells and was at particularly high levels during the period of land colonisation because the ozone layer was not fully developed. Seed plants use a mix of secondary metabolites as UV ‘sunscreens’, and of these the flavonoid group of phenylpropanoids is of particular importance

    MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions

    No full text
    Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida)] and Eustoma grandiflorum (lisianthus) plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor (ROSEA1) that up-regulates flavonoid biosynthesis in Antirrhinum majus. The petunia lines were also crossed with previously produced MP lines containing a Zea mays flavonoid-related bHLH transcription factor transgene (LEAF COLOR, LC), which induces strong vegetative pigmentation when these 35S:LC plants are exposed to high light levels. 35S:ROS1 lisianthus transgenics had limited changes in anthocyanin pigmentation, specifically, precocious pigmentation of flower petals and increased pigmentation of sepals. RNA transcript levels for two anthocyanin biosynthetic genes, chalcone synthase and anthocyanidin synthase, were increased in the 35S:ROS1 lisianthus petals compared to those of control lines. With MP, the 35S:ROS1 calli showed novel red pigmentation in culture, but this was generally not seen in tissue culture plantlets regenerated from the calli or young plants transferred to soil in the greenhouse. Anthocyanin pigmentation was enhanced in the stems of mature 35S:ROS1 MP plants, but the MP white-flower phenotype was not complemented. Progeny from a 35S:ROS1×35S:LC cross had novel pigmentation phenotypes that were not present in either parental line or MP. In particular, there was increased pigment accumulation in the petal throat region, and the anthers changed from yellow to purple colour. An outdoor field trial was conducted with the 35S:ROS1, 35S:LC, 35S:ROS1×35S:LC and control MP lines. Field conditions rapidly induced intense foliage pigmentation in 35S:LC plants, a phenotype not observed in control MP or equivalent 35S:LC plants maintained in a greenhouse. No difference in plant stature, seed germination, or plant survival was observed between transgenic and control plants
    corecore